Author Topic: Domain Coloring  (Read 11141 times)

0 Members and 1 Guest are viewing this topic.

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Domain Coloring
« on: August 15, 2020, 02:13:58 pm »
A kind of method for plotting complex functions:
https://en.wikipedia.org/wiki/Domain_coloring

So pretty I had to share this
Code: [Select]
defdbl a-z
dim shared pi as double
pi = 4*atn(1)

const sw = 800
const sh = 600

declare function hrgb(h as double, m as double)

screen _newimage(sw, sh, 32)


'dim as double x, y, u, v, m, a, uu, vv, x0, y0

dim p as string

for j=0 to 7
for yy=0 to sh
for xx=0 to sw
        select case j
        case 0
                u = (xx - sw/2)*0.015
                v = (sh/2 - yy)*0.015

                x = u
                y = v

                p = "z"
        case 1
                u = (xx - sw/2)*0.01 + 2
                v = (sh/2 - yy)*0.01

                x = exp(u)*cos(v)
                y = exp(u)*sin(v)

                p = "exp(z)"
        case 2
                u = (xx - sw/2)*0.015
                v = (sh/2 - yy)*0.015

                x = sin(u)*_cosh(v)
                y = cos(u)*_sinh(v)

                p = "sin(z)"
        case 3
                u = (xx - sw/2)*0.005 - 0.5
                v = (sh/2 - yy)*0.005
                x0 = u
                y0 = v
                for i=0 to 0
                        uu = u*u - v*v + x0
                        vv = 2*u*v + y0

                        u = uu
                        v = vv
                next
                x = u
                y = v

                p = "f(z) = z^2 + c"
        case 4
                u = (xx - sw/2)*0.005 - 0.5
                v = (sh/2 - yy)*0.005
                x0 = u
                y0 = v
                for i=0 to 1
                        uu = u*u - v*v + x0
                        vv = 2*u*v + y0

                        u = uu
                        v = vv
                next
                x = u
                y = v

                p = "f(f(z))"
        case 5
                u = (xx - sw/2)*0.005 - 0.5
                v = (sh/2 - yy)*0.005
                x0 = u
                y0 = v
                for i=0 to 3
                        uu = u*u - v*v + x0
                        vv = 2*u*v + y0

                        u = uu
                        v = vv
                next
                x = u
                y = v

                p = "f(f(f(f(z))))"
        case 6
                u = (xx - sw/2)*0.005 - 0.5
                v = (sh/2 - yy)*0.005
                x0 = u
                y0 = v
                for i=0 to 9
                        uu = u*u - v*v + x0
                        vv = 2*u*v + y0

                        u = uu
                        v = vv
                next
                x = u
                y = v

                p = "f(f(f(f(f(f(f(f(f(f(z))))))))))"
case 7
u = (xx - sw/2)*0.0015
v = (sh/2 - yy)*0.0015

x = sin(u/(u*u + v*v))*_cosh(-v/(u*u + v*v))
y = cos(u/(u*u + v*v))*_sinh(-v/(u*u + v*v))

p = "sin(1/z)"
        end select

        m = sqr(x*x + y*y)
        a = (pi + _atan2(y, x))/(2*pi)

        pset (xx, yy), hrgb(a, m)

        locate 1,1: ? p
next
next

sleep
next

system

function hrgb(h as double, m as double)
'dim as double r, g, b, mm

r = 0.5 - 0.5*sin(2*pi*h - pi/2)
    g = (0.5 + 0.5*sin(2*pi*h*1.5 - pi/2)) * -(h < 0.66)
    b = (0.5 + 0.5*sin(2*pi*h*1.5 + pi/2)) * -(h > 0.33)

mm = (m*100 mod 100)*0.01

if ((m*2*pi*100 mod 2*pi*100) < 50) or ((h*2*pi*100 mod 4*2*pi) < 6) then
'hrgb = _rgb(0,0,0)
hrgb = _rgb(15*r, 155*g, 155*b)
else
hrgb = _rgb(255*r, 255*g, 255*b)
end if
end function
« Last Edit: August 17, 2020, 08:04:46 am by _vince »

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #1 on: August 15, 2020, 03:23:42 pm »
Pretty enough to take pictures
cplot1.png
* cplot1.png (Filesize: 129.94 KB, Dimensions: 800x600, Views: 318)
cplot2.png
* cplot2.png (Filesize: 20.42 KB, Dimensions: 800x600, Views: 299)
cplot3.png
* cplot3.png (Filesize: 107.63 KB, Dimensions: 800x600, Views: 309)
cplot4.png
* cplot4.png (Filesize: 160.15 KB, Dimensions: 800x600, Views: 329)
cplot5.png
* cplot5.png (Filesize: 257.82 KB, Dimensions: 800x600, Views: 343)
cplot6.png
* cplot6.png (Filesize: 483.22 KB, Dimensions: 800x600, Views: 312)
cplot7.png
* cplot7.png (Filesize: 765.36 KB, Dimensions: 800x600, Views: 316)
sin1z.png
* sin1z.png (Filesize: 284.86 KB, Dimensions: 800x600, Views: 303)
« Last Edit: August 17, 2020, 08:52:27 am by _vince »

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: Domain Coloring
« Reply #2 on: August 15, 2020, 03:33:36 pm »
@_vince  Nice! How did you come across this?

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #3 on: August 15, 2020, 03:42:55 pm »
I found the greatest book ever https://www.springer.com/gp/book/9783034801799

Lots of pretty pictures, I can email you a pdf copy if you want

Offline euklides

  • Forum Regular
  • Posts: 128
    • View Profile
Re: Domain Coloring
« Reply #4 on: August 16, 2020, 04:18:04 am »
Nice to see !
And you can change the cases, like...

= (xx - sw / 2) * 0.035 + SIN(RND * 6)
v = (sh / 2 - yy) * 0.015
x = SIN(u + 1) * _COSH(v)
y = COS(u - 1) * _SINH(v)


or

u = (xx - sw / 3) * 0.035 + SIN(RND * 6)
v = (sh / 2 - yy + u * 15) * 0.025
x = SIN(u + 1) * 1 / _COSH(v)
y= 1 / (COS(u - 1) * _SINH(v)) + 2


and so on...
Why not yes ?

Offline Ashish

  • Forum Resident
  • Posts: 630
  • Never Give Up!
    • View Profile
Re: Domain Coloring
« Reply #5 on: August 16, 2020, 10:24:26 am »
Beautilful! I like it.
if (Me.success) {Me.improve()} else {Me.tryAgain()}


My Projects - https://github.com/AshishKingdom?tab=repositories
OpenGL tutorials - https://ashishkingdom.github.io/OpenGL-Tutorials

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: Domain Coloring
« Reply #6 on: August 16, 2020, 11:59:04 am »
:) Almost has Mandelbrot looking like exotic butterfly.

and sounds just like "f(f(f(f(f(f(f(f(f(f(z))))))))))"
« Last Edit: August 16, 2020, 12:01:35 pm by bplus »

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #7 on: August 17, 2020, 03:01:42 pm »
Some more picture, Taylor expansion of sine

You can clearly see all the complex zeros and the number of them is the order of the polynomial, not something you'd see in a real plot
taylor_sin_1.png
* taylor_sin_1.png (Filesize: 137.47 KB, Dimensions: 802x600, Views: 282)
taylor_sin_2.png
* taylor_sin_2.png (Filesize: 267.15 KB, Dimensions: 799x602, Views: 320)
taylor_sin_3.png
* taylor_sin_3.png (Filesize: 301.23 KB, Dimensions: 800x601, Views: 316)
taylor_sin_4.png
* taylor_sin_4.png (Filesize: 290.87 KB, Dimensions: 799x601, Views: 310)
taylor_sin.png
* taylor_sin.png (Filesize: 107.63 KB, Dimensions: 800x600, Views: 294)
« Last Edit: August 17, 2020, 03:38:08 pm by _vince »

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #8 on: August 17, 2020, 03:12:50 pm »
Moving average filter

Again, a fun image of how zeros and poles look, you see how magnitude contours get closer and closer together around poles as the magnitude quickly increases to infinity
ma1.png
* ma1.png (Filesize: 158.09 KB, Dimensions: 800x601, Views: 330)
ma2.png
* ma2.png (Filesize: 167.74 KB, Dimensions: 800x601, Views: 301)
ma2x.png
* ma2x.png (Filesize: 30.67 KB, Dimensions: 561x521, Views: 287)
« Last Edit: August 17, 2020, 03:52:24 pm by _vince »

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: Domain Coloring
« Reply #9 on: August 17, 2020, 03:50:11 pm »
Hi @_vince

Looking over code today. Why is red discriminated? Could this be a typo? There seems to be no lack of color?

From the hrgb sub in original post:
Code: QB64: [Select]
  1.         if ((m*2*pi*100 mod 2*pi*100) < 50) or ((h*2*pi*100 mod 4*2*pi) < 6) then
  2.                 'hrgb = _rgb(0,0,0)
  3.                 hrgb = _rgb(15*r, 155*g, 155*b)  '  <<< what's with red, typo ?
  4.         else
  5.                 hrgb = _rgb(255*r, 255*g, 255*b)
  6.         end if
  7.  

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #10 on: August 17, 2020, 03:54:50 pm »
Yes, just a typo.  That's why the contours don't have the red tint around red.

This colouring scheme isn't particularly good, At some point I'm intending to make a really nice one like in pictures like this, https://en.wikipedia.org/wiki/File:Domain_coloring_x2-1_x-2-i_x-2-i_d_x2%2B2%2B2i.xcf

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: Domain Coloring
« Reply #11 on: August 17, 2020, 04:10:29 pm »
I discovered an effect while messing with the colors, it's a moving experience ;-))
Code: QB64: [Select]
  1. DEFDBL A-Z
  2. pi = 4 * ATN(1)
  3.  
  4. CONST sw = 800
  5. CONST sh = 600
  6. _TITLE "b+ fiddles... press spacebar "
  7.  
  8. SCREEN _NEWIMAGE(sw, sh, 32)
  9.  
  10.  
  11. 'dim as double x, y, u, v, m, a, uu, vv, x0, y0
  12.  
  13.  
  14. FOR j = 6 TO 6
  15.     FOR yy = 0 TO sh
  16.         FOR xx = 0 TO sw
  17.             SELECT CASE j
  18.                 CASE 0
  19.                     u = (xx - sw / 2) * 0.015
  20.                     v = (sh / 2 - yy) * 0.015
  21.  
  22.                     x = u
  23.                     y = v
  24.  
  25.                     p = "z"
  26.                 CASE 1
  27.                     u = (xx - sw / 2) * 0.01 + 2
  28.                     v = (sh / 2 - yy) * 0.01
  29.  
  30.                     x = EXP(u) * COS(v)
  31.                     y = EXP(u) * SIN(v)
  32.  
  33.                     p = "exp(z)"
  34.                 CASE 2
  35.                     u = (xx - sw / 2) * 0.015
  36.                     v = (sh / 2 - yy) * 0.015
  37.  
  38.                     x = SIN(u) * _COSH(v)
  39.                     y = COS(u) * _SINH(v)
  40.  
  41.                     p = "sin(z)"
  42.                 CASE 3
  43.                     u = (xx - sw / 2) * 0.005 - 0.5
  44.                     v = (sh / 2 - yy) * 0.005
  45.                     x0 = u
  46.                     y0 = v
  47.                     FOR i = 0 TO 0
  48.                         uu = u * u - v * v + x0
  49.                         vv = 2 * u * v + y0
  50.  
  51.                         u = uu
  52.                         v = vv
  53.                     NEXT
  54.                     x = u
  55.                     y = v
  56.  
  57.                     p = "f(z) = z^2 + c"
  58.                 CASE 4
  59.                     u = (xx - sw / 2) * 0.005 - 0.5
  60.                     v = (sh / 2 - yy) * 0.005
  61.                     x0 = u
  62.                     y0 = v
  63.                     FOR i = 0 TO 1
  64.                         uu = u * u - v * v + x0
  65.                         vv = 2 * u * v + y0
  66.  
  67.                         u = uu
  68.                         v = vv
  69.                     NEXT
  70.                     x = u
  71.                     y = v
  72.  
  73.                     p = "f(f(z))"
  74.                 CASE 5
  75.                     u = (xx - sw / 2) * 0.005 - 0.5
  76.                     v = (sh / 2 - yy) * 0.005
  77.                     x0 = u
  78.                     y0 = v
  79.                     FOR i = 0 TO 3
  80.                         uu = u * u - v * v + x0
  81.                         vv = 2 * u * v + y0
  82.  
  83.                         u = uu
  84.                         v = vv
  85.                     NEXT
  86.                     x = u
  87.                     y = v
  88.  
  89.                     p = "f(f(f(f(z))))"
  90.                 CASE 6
  91.                     u = (xx - sw / 2) * 0.005 - 0.5
  92.                     v = (sh / 2 - yy) * 0.005
  93.                     x0 = u
  94.                     y0 = v
  95.                     FOR i = 0 TO 9
  96.                         uu = u * u - v * v + x0
  97.                         vv = 2 * u * v + y0
  98.  
  99.                         u = uu
  100.                         v = vv
  101.                     NEXT
  102.                     x = u
  103.                     y = v
  104.  
  105.                     p = "f(f(f(f(f(f(f(f(f(f(z))))))))))"
  106.                 CASE 7
  107.                     u = (xx - sw / 2) * 0.0015
  108.                     v = (sh / 2 - yy) * 0.0015
  109.  
  110.                     x = SIN(u / (u * u + v * v)) * _COSH(-v / (u * u + v * v))
  111.                     y = COS(u / (u * u + v * v)) * _SINH(-v / (u * u + v * v))
  112.  
  113.                     p = "sin(1/z)"
  114.             END SELECT
  115.  
  116.             m = SQR(x * x + y * y)
  117.             a = (pi + _ATAN2(y, x)) / (2 * pi)
  118.  
  119.             PSET (xx, yy), hrgb(a, m)
  120.  
  121.             LOCATE 1, 1: PRINT p
  122.         NEXT
  123.     NEXT
  124.     DO
  125.         _SCREENMOVE 200 + RND * 4 - 2, 80 + RND * 3 - 1.5
  126.         _LIMIT 30
  127.     LOOP UNTIL _KEYDOWN(32)
  128.     SLEEP
  129.  
  130.  
  131. FUNCTION hrgb (h AS DOUBLE, m AS DOUBLE)
  132.     'dim as double r, g, b, mm
  133.  
  134.     r = 0.5 - 0.5 * SIN(2 * pi * h - pi / 2)
  135.     g = (0.5 + 0.5 * SIN(2 * pi * h * 1.5 - pi / 2)) * -(h < 0.66)
  136.     b = (0.5 + 0.5 * SIN(2 * pi * h * 1.5 + pi / 2)) * -(h > 0.33)
  137.  
  138.     mm = (m * 100 MOD 100) * 0.01
  139.  
  140.     IF ((m * 2 * pi * 100 MOD 2 * pi * 100) < 50) OR ((h * 2 * pi * 100 MOD 4 * 2 * pi) < 6) THEN
  141.         'hrgb = _rgb(0,0,0)
  142.         hrgb = _RGB(115 * r, 115 * g, 115 * b)
  143.     ELSE
  144.         hrgb = _RGB(255 * r, 255 * g, 255 * b)
  145.     END IF
  146.  
  147.  

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #12 on: August 17, 2020, 07:24:11 pm »
edit:
« Last Edit: November 30, 2020, 08:42:33 am by _vince »

Offline _vince

  • Seasoned Forum Regular
  • Posts: 422
    • View Profile
Re: Domain Coloring
« Reply #13 on: August 19, 2020, 12:54:08 pm »
https://en.wikipedia.org/wiki/Cauchy%27s_integral_formula

Cauchy's integral formula is a powerful result in complex analysis that says you can evaluate a function f(z0) inside a contour just by taking the contour integral of f(z)/(z - z0).  It essentially says that the function inside the contour can be defined entirely by the contour.

To begin, in the first image I plot the function

f(z) = z - z^3/3! + z^5/5! - z^7/7!

and draw the contour:

x(t) = pi*cos(t) + 3*pi/2
y(t) = pi*sin(t)

Then I numerically evaluate the following line integral using trapezoidal rule: https://en.wikipedia.org/wiki/Trapezoidal_rule

f(z0) = (1/(2*pi*i)) \cint_C f(z)/(z - z0) dz

Firstly for N = 30 and you see all the distortion around the contour and then for N = 100 and N = 1000 which is dead on.  And you see that it converges to the original function as you'd expect. The pretty artifacts around the contour are the errors due to numerical integration, it is like a complex visual of https://upload.wikimedia.org/wikipedia/commons/d/d1/Integration_num_trapezes_notation.svg

Code: QB64: [Select]
  1. '#lang "fblite"
  2. DEFLNG A-Z
  3.  
  4. CONST sw = 800
  5. CONST sh = 600
  6.  
  7. pi = 4 * ATN(1)
  8.  
  9. 'declare function cosh(x as double) as double
  10. 'declare function sinh(x as double) as double
  11.  
  12. 'screenres sw, sh, 32
  13. SCREEN _NEWIMAGE(sw, sh, 32)
  14.  
  15.  
  16. n = 30
  17. DIM sum AS DOUBLE, delta AS DOUBLE, p AS DOUBLE, q AS DOUBLE, pp AS DOUBLE, qq AS DOUBLE
  18.  
  19.  
  20. FOR i = 0 TO 2
  21.  
  22.     FOR yy = 0 TO sh
  23.         FOR xx = 0 TO sw
  24.    
  25.             SELECT CASE i
  26.                 CASE 0
  27.                     u = (xx - sw / 2) * 0.015
  28.                     v = (sh / 2 - yy) * 0.015
  29.                     x = u
  30.                     y = v
  31.                 CASE 1
  32.                     u = (xx - sw / 2) * 0.01 + 3 * pi / 2
  33.                     v = (sh / 2 - yy) * 0.01
  34.  
  35.                     x = u
  36.                     y = v
  37.        
  38.                     cexp uu, vv, u, v, 3, 0
  39.                     x = x - uu / 6
  40.                     y = y - vv / 6
  41.        
  42.                     cexp uu, vv, u, v, 5, 0
  43.                     x = x + uu / 120
  44.                     y = y + vv / 120
  45.        
  46.                     cexp uu, vv, u, v, 7, 0
  47.                     x = x - uu / 5040
  48.                     y = y - vv / 5040
  49.                 CASE 2
  50.                     u = (xx - sw / 2) * 0.01 + 3 * pi / 2
  51.                     v = (sh / 2 - yy) * 0.01
  52.  
  53.                     x = u
  54.                     y = v
  55.        
  56.                     cexp uu, vv, u, v, 3, 0
  57.                     x = x - uu / 6
  58.                     y = y - vv / 6
  59.        
  60.                     cexp uu, vv, u, v, 5, 0
  61.                     x = x + uu / 120
  62.                     y = y + vv / 120
  63.  
  64.                     cexp uu, vv, u, v, 7, 0
  65.                     x = x - uu / 5040
  66.                     y = y - vv / 5040
  67.        
  68.                     sum = 0
  69.                     FOR j = 0 TO n - 1
  70.                         p = pi * COS(j * 2 * pi / n) + 3 * pi / 2
  71.                         q = pi * SIN(j * 2 * pi / n)
  72.            
  73.                         pp = p
  74.                         qq = q
  75.                         cexp uu, vv, p, q, 3, 0
  76.                         pp = pp - uu / 6
  77.                         qq = qq - vv / 6
  78.                         cexp uu, vv, p, q, 5, 0
  79.                         pp = pp + uu / 120
  80.                         qq = qq + vv / 120
  81.                         cexp uu, vv, p, q, 7, 0
  82.                         pp = pp - uu / 5040
  83.                         qq = qq - vv / 5040
  84.            
  85.                         cdiv uu, vv, pp, qq, p - u, q - v
  86.            
  87.                         IF j = 0 OR j = n - 1 THEN
  88.                             sum = sum + 0.5 * (-uu * pi * SIN(j * 2 * pi / n) - vv * pi * COS(j * 2 * pi / n))
  89.                         ELSE
  90.                             sum = sum + (-uu * pi * SIN(j * 2 * pi / n) - vv * pi * COS(j * 2 * pi / n))
  91.                         END IF
  92.                     NEXT
  93.                     x = sum * 2 * pi / n
  94.        
  95.                     sum = 0
  96.                     FOR j = 0 TO n - 1
  97.                         p = pi * COS(j * 2 * pi / n) + 3 * pi / 2
  98.                         q = pi * SIN(j * 2 * pi / n)
  99.            
  100.                         pp = p
  101.                         qq = q
  102.                         cexp uu, vv, p, q, 3, 0
  103.                         pp = pp - uu / 6
  104.                         qq = qq - vv / 6
  105.                         cexp uu, vv, p, q, 5, 0
  106.                         pp = pp + uu / 120
  107.                         qq = qq + vv / 120
  108.                         cexp uu, vv, p, q, 7, 0
  109.                         pp = pp - uu / 5040
  110.                         qq = qq - vv / 5040
  111.            
  112.                         cdiv uu, vv, pp, qq, p - u, q - v
  113.            
  114.                         IF j = 0 OR j = n - 1 THEN
  115.                             sum = sum + 0.5 * (-vv * pi * SIN(j * 2 * pi / n) + uu * pi * COS(j * 2 * pi / n))
  116.                         ELSE
  117.                             sum = sum + (-vv * pi * SIN(j * 2 * pi / n) + uu * pi * COS(j * 2 * pi / n))
  118.                         END IF
  119.                     NEXT
  120.                     y = sum * 2 * pi / n
  121.        
  122.                     cmul uu, vv, x, y, 0, -1 / (2 * pi)
  123.        
  124.                     x = uu
  125.                     y = vv
  126.  
  127.  
  128.             END SELECT
  129.  
  130.             m = SQR(x * x + y * y)
  131.             a = (pi + _ATAN2(y, x)) / (2 * pi)
  132.  
  133.             PSET (xx, yy), hrgb(a, m)
  134.         NEXT
  135.     NEXT
  136.  
  137.     CIRCLE (sw / 2, sh / 2), pi / 0.01 - 2, _RGB(0, 0, 0)
  138.     CIRCLE (sw / 2, sh / 2), pi / 0.01 - 1, _RGB(0, 0, 0)
  139.     CIRCLE (sw / 2, sh / 2), pi / 0.01, _RGB(255, 255, 0)
  140.     CIRCLE (sw / 2, sh / 2), pi / 0.01 + 1, _RGB(0, 0, 0)
  141.     CIRCLE (sw / 2, sh / 2), pi / 0.01 + 2, _RGB(0, 0, 0)
  142.  
  143.     'for a = 0 to 2*pi step 0.01
  144.     '    x = pi*cos(a) + 3*pi/2
  145.     '    y = pi*sin(a)
  146.  
  147.     '    pset ((x/0.015 + sw/2), (sh/2 - y/0.015)), rgb(255,255,255)
  148.     'next
  149.  
  150.     SLEEP
  151.  
  152.  
  153. FUNCTION hrgb (h AS DOUBLE, m AS DOUBLE)
  154.     DIM r AS DOUBLE, g AS DOUBLE, b AS DOUBLE, t AS DOUBLE
  155.  
  156.     r = 0.5 - 0.5 * SIN(2 * pi * h - pi / 2)
  157.     g = (0.5 + 0.5 * SIN(2 * pi * h * 1.5 - pi / 2)) * -(h < 0.66)
  158.     b = (0.5 + 0.5 * SIN(2 * pi * h * 1.5 + pi / 2)) * -(h > 0.33)
  159.  
  160.     n = 16
  161.     't = 0.3/m
  162.     t = 0.2
  163.     h = h + (0.5 * t / n)
  164.  
  165.     IF ((m * 500 MOD 500) < 70) OR (ABS((h * n) - INT(h * n)) < t) THEN
  166.         'hrgb = rgb(0,0,0)
  167.         hrgb = _RGB(125 * r, 125 * g, 125 * b)
  168.     ELSE
  169.         hrgb = _RGB(255 * r, 255 * g, 255 * b)
  170.     END IF
  171.  
  172. SUB cexp (u AS DOUBLE, v AS DOUBLE, x AS DOUBLE, y AS DOUBLE, a AS DOUBLE, b AS DOUBLE)
  173.     DIM lnz AS DOUBLE, argz AS DOUBLE, mag AS DOUBLE, ang AS DOUBLE
  174.  
  175.     lnz = x * x + y * y
  176.  
  177.     IF lnz = 0 THEN
  178.         u = 0
  179.         v = 0
  180.     ELSE
  181.         lnz = 0.5 * LOG(lnz)
  182.         argz = _ATAN2(y, x)
  183.  
  184.         mag = EXP(a * lnz - b * argz)
  185.         ang = a * argz + b * lnz
  186.  
  187.         u = mag * COS(ang)
  188.         v = mag * SIN(ang)
  189.     END IF
  190.  
  191. SUB cmul (u AS DOUBLE, v AS DOUBLE, x AS DOUBLE, y AS DOUBLE, a AS DOUBLE, b AS DOUBLE)
  192.     u = x * a - y * b
  193.     v = x * b + y * a
  194.  
  195. SUB cdiv (u AS DOUBLE, v AS DOUBLE, x AS DOUBLE, y AS DOUBLE, a AS DOUBLE, b AS DOUBLE)
  196.     DIM d AS DOUBLE
  197.     d = a * a + b * b
  198.     u = (x * a + y * b) / d
  199.     v = (y * a - x * b) / d
  200.  
cif1.png
* cif1.png (Filesize: 450.57 KB, Dimensions: 1026x771, Views: 266)
cif2-30.png
* cif2-30.png (Filesize: 495.83 KB, Dimensions: 1025x771, Views: 263)
cif3-100.png
* cif3-100.png (Filesize: 424.44 KB, Dimensions: 1026x770, Views: 294)
cif4-1000.png
* cif4-1000.png (Filesize: 324.71 KB, Dimensions: 1026x770, Views: 275)
« Last Edit: August 19, 2020, 01:49:26 pm by _vince »

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: Domain Coloring
« Reply #14 on: August 19, 2020, 01:10:47 pm »
Hey _vince your graphs remind me of my study of Inversion Points of 2D Circle:
https://www.qb64.org/forum/index.php?topic=2933.msg121929#msg121929