CONST Pi!
= 3.141592, Hours!
= -Pi!
/ 6, ZOffset%
= -398, XImage%
= 182, YImage%
= 252 CONST Halfwidth%%
= 50, Halfheight%%
= Halfwidth%%
* YImage%
/ XImage%
, Radius%
= 320, Tucked%%
= 7
PRINT N%%
, S%%
, Positions!
(S%%
, N%%
, 0, 0); Positions!
(S%%
, N%%
, 1, 0)
Phi!(N%%) = N%% * Hours!
Phi!(N%%) = (N%% - 12) * Hours!
Positions!(S%%, 0, 0, 4) = 0
Positions!(S%%, 0, 1, 4) = Radius% - Tucked%% * S%%
Positions!(S%%, 0, 0, 3) = Positions!(S%%, 0, 0, 4) + Halfwidth%%
Positions!(S%%, 0, 1, 3) = Positions!(S%%, 0, 1, 4) - Halfheight%%
Positions!(S%%, 0, 0, 2) = Positions!(S%%, 0, 0, 4) - Halfwidth%%
Positions!(S%%, 0, 1, 2) = Positions!(S%%, 0, 1, 4) - Halfheight%%
Positions!(S%%, 0, 0, 1) = Positions!(S%%, 0, 0, 4) + Halfwidth%%
Positions!(S%%, 0, 1, 1) = Positions!(S%%, 0, 1, 4) + Halfheight%%
Positions!(S%%, 0, 0, 0) = Positions!(S%%, 0, 0, 4) - Halfwidth%%
Positions!(S%%, 0, 1, 0) = Positions!(S%%, 0, 1, 4) + Halfheight%%
'CALL Angle doesn't work with Positions!()
'CALL Angle(Positions!(S%%, 0, 0, 0), Positions!(S%%, 0, 1, 0), Positions!(S%%, N%%, 0, 0), Positions!(S%%, N%%, 1, 0), Phi!(N%%))
'CALL Angle(Positions!(S%%, 0, 0, 1), Positions!(S%%, 0, 1, 1), Positions!(S%%, N%%, 0, 1), Positions!(S%%, N%%, 1, 1), Phi!(N%%))
'CALL Angle(Positions!(S%%, 0, 0, 2), Positions!(S%%, 0, 1, 2), Positions!(S%%, N%%, 0, 2), Positions!(S%%, N%%, 1, 2), Phi!(N%%))
'CALL Angle(Positions!(S%%, 0, 0, 3), Positions!(S%%, 0, 1, 3), Positions!(S%%, N%%, 0, 3), Positions!(S%%, N%%, 1, 3), Phi!(N%%))
Positions!
(S%%
, N%%
, 0, 0) = CINT(Positions!
(S%%
, 0, 0, 0) * COS(Phi!
(N%%
)) - Positions!
(S%%
, 0, 1, 0) * SIN(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 1, 0) = CINT(Positions!
(S%%
, 0, 0, 0) * SIN(Phi!
(N%%
)) + Positions!
(S%%
, 0, 1, 0) * COS(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 0, 1) = CINT(Positions!
(S%%
, 0, 0, 1) * COS(Phi!
(N%%
)) - Positions!
(S%%
, 0, 1, 1) * SIN(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 1, 1) = CINT(Positions!
(S%%
, 0, 0, 1) * SIN(Phi!
(N%%
)) + Positions!
(S%%
, 0, 1, 1) * COS(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 0, 2) = CINT(Positions!
(S%%
, 0, 0, 2) * COS(Phi!
(N%%
)) - Positions!
(S%%
, 0, 1, 2) * SIN(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 1, 2) = CINT(Positions!
(S%%
, 0, 0, 2) * SIN(Phi!
(N%%
)) + Positions!
(S%%
, 0, 1, 2) * COS(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 0, 3) = CINT(Positions!
(S%%
, 0, 0, 3) * COS(Phi!
(N%%
)) - Positions!
(S%%
, 0, 1, 3) * SIN(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 1, 3) = CINT(Positions!
(S%%
, 0, 0, 3) * SIN(Phi!
(N%%
)) + Positions!
(S%%
, 0, 1, 3) * COS(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 0, 4) = CINT(Positions!
(S%%
, 0, 0, 4) * COS(Phi!
(N%%
)) - Positions!
(S%%
, 0, 1, 4) * SIN(Phi!
(N%%
))) Positions!
(S%%
, N%%
, 1, 4) = CINT(Positions!
(S%%
, 0, 0, 4) * SIN(Phi!
(N%%
)) + Positions!
(S%%
, 0, 1, 4) * COS(Phi!
(N%%
)))
Positions!(S%%, 12, 0, 0) = Tucked%% * (3 - S%%) - Halfwidth%%
Positions!(S%%, 12, 1, 0) = Halfheight%%
Positions!(S%%, 12, 0, 1) = Positions!(S%%, 12, 0, 0) + 2 * Halfwidth%%
Positions!(S%%, 12, 1, 1) = Halfheight%%
Positions!(S%%, 12, 0, 2) = Tucked%% * (3 - S%%) - Halfwidth%%
Positions!(S%%, 12, 1, 2) = -Halfheight%%
Positions!(S%%, 12, 0, 3) = Positions!(S%%, 12, 0, 2) + 2 * Halfwidth%%
Positions!(S%%, 12, 1, 3) = -Halfheight%%
Positions!(S%%, 12, 0, 4) = Tucked%% * (3 - S%%)
Positions!(S%%, 12, 1, 4) = 0
SUB Angle
(Xin%
, Yin%
, Xout%
, Yout%
, Theta!
) Xout%
= CINT(Xin%
* COS(Theta!
) - Yin%
* SIN(Theta!
)) Yout%
= CINT(Xin%
* SIN(Theta!
) + Yin%
* COS(Theta!
))