Author Topic: logarithms via continued fractions  (Read 3781 times)

0 Members and 1 Guest are viewing this topic.

Offline jack

  • Seasoned Forum Regular
  • Posts: 408
    • View Profile
logarithms via continued fractions
« on: April 30, 2019, 07:35:40 pm »
for amusement only :)
Code: [Select]
_TITLE "logarithm_cf"

'computing logarithms by constructing a continued fraction

' by jack

'see http://demonstrations.wolfram.com/ApproximatingTheLogarithmOfAnyBaseWithContinuedFractions/
' and http://www.numbertheory.org/pdfs/log.pdf

DIM nbase AS DOUBLE, number AS DOUBLE
DO
    INPUT "log base, number ", nbase, number
    IF nbase < 1E-9 OR number < 1E-9 THEN EXIT DO
    PRINT lg(nbase, number)
LOOP

FUNCTION lg# (nbase AS DOUBLE, number AS DOUBLE)
    DIM b AS DOUBLE, x AS DOUBLE, p0 AS DOUBLE, p1 AS DOUBLE
    DIM n AS DOUBLE, n0 AS DOUBLE, n1 AS DOUBLE, d AS DOUBLE
    DIM d0 AS DOUBLE, d1 AS DOUBLE, t AS DOUBLE, er AS DOUBLE
    er = 1E-9

    IF nbase > 1 AND number > 0 THEN
        IF nbase = number THEN
            lg = 1
            EXIT FUNCTION
        ELSEIF number = 1 THEN
            lg = 0
            EXIT FUNCTION
        ELSE
            b = nbase
            x = number
            IF x < b THEN
                n0 = 1
                n1 = 0
                d0 = 0
                d1 = 1
            ELSE
                SWAP b, x
                n0 = 0
                n1 = 1
                d0 = 1
                d1 = 0
            END IF
            er = er * x
            WHILE (b - 1) > er
                p0 = 1
                IF x = b THEN
                    t = 2
                    x = 1
                ELSE
                    t = 0
                    WHILE p0 < b
                        p1 = p0
                        p0 = p0 * x
                        t = t + 1
                    WEND
                END IF
                t = t - 1
                n = t * n1 + n0: n0 = n1: n1 = n
                d = t * d1 + d0: d0 = d1: d1 = d
                PRINT n; "/"; d, n / d
                b = b / p1
                SWAP b, x
            WEND
        END IF
    END IF
    lg = n / d
END FUNCTION

Offline bplus

  • Global Moderator
  • Forum Resident
  • Posts: 8053
  • b = b + ...
    • View Profile
Re: logarithms via continued fractions
« Reply #1 on: May 02, 2019, 11:46:05 am »
Hi jack,

This is interesting subject for me but my attentions are on Sudoku improvements at moment.

I look at continued fractions (at Wiki for starters) and think I know how some people feel about recursive procedures, ha!

Then I wonder if this could be simplified, like explained in English to eighth grader or by rewriting the code with a single base like 10, 2 or e.

I also wonder how this might be written as a recursive procedure. A recursive procedure must require a test for stopping. I would use the difference between the last result and current. When that is less than say your "er" then time to stop.

I also wonder how this method compares to Taylor or Maclaurin Series.

Offline jack

  • Seasoned Forum Regular
  • Posts: 408
    • View Profile
Re: logarithms via continued fractions
« Reply #2 on: May 02, 2019, 11:57:03 am »
Hi bplus :)
I will see if I can clobber up an in-a-nutshell explanation later, but to answer your question about Taylor series, Taylor series are faster and efficient.