'There are 12 mathematically made pictures on this program.
'The first 11 use the same equations, just different numbers.
'The 12th is a little bit different.
'Feel free to use any of these in your own programs.
'Finished on July 22, 2019.
PRINT " Fun Math Graphics" PRINT " 11 of these pictures are drawn using the same equations," PRINT " just with different numbers. The 12th is similar but different." INPUT " Press Enter to start.", a$
one:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 180 * 3.141592) * 180) + 325y
= INT(COS(s
/ 180 * 3.141592) * 180) + 225 seconds = 0
two:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 90 * 3.141592) * 180) + 325y
= INT(COS(s
/ 180 * 3.141592) * 180) + 225 seconds = 0
three:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 180 * 3.141592) * 180) + 325y
= INT(COS(s
/ 90 * 3.141592) * 180) + 225 seconds = 0
four:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 135 * 3.141592) * 180) + 325y
= INT(COS(s
/ 33.75 * 3.141592) * 180) + 225 seconds = 0
five:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 360 * 3.141592) * 180) + 325y
= INT(COS(s
/ 45 * 3.141592) * 180) + 225 seconds = 0
six:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 90 * 3.141592) * 180) + 325y
= INT(COS(s
/ 360 * 3.141592) * 180) + 225 seconds = 0
seven:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 45 * 3.141592) * 180) + 325y
= INT(COS(s
/ 360 * 3.141592) * 180) + 225 seconds = 0
eight:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 120 * 3.141592) * 180) + 325y
= INT(COS(s
/ 5.1428 * 3.141592) * 180) + 225 seconds = 0
nine:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 360 * 3.141592) * 180) + 325y
= INT(COS(s
/ 6 * 3.141592) * 180) + 225 seconds = 0
ten:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 360 * 3.141592) * 180) + 325y
= INT(COS(s
/ 11.25 * 3.141592) * 180) + 225 seconds = 0
eleven:
seconds = seconds + .01
s = (60 - seconds) * 6 + 180
x
= INT(SIN(s
/ 360 * 3.141592) * 180) + 325y
= INT(COS(s
/ 1.57 * 3.141592) * 180) + 225 seconds = 0
twelve:
s = 0
s = s + 1
x
= COS(s
* 3.141592 / 180) * d
y
= SIN(s
* 3.151492 / 180) * d